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ABSTRACT: Four-dimensional variational (4D-Var) data assimilation (DA) is developed for a coupled atmosphere–
ocean quasigeostrophic application. Complications arise in coupled data assimilation (CDA) systems due to the presence of
multiple spatiotemporal scales. Various formulations of the background error covariance matrix (B), using different localiza-
tion strategies, are explored to evaluate their impact on 4D-Var performance in a CDA setting. 4D-Var requires access to
tangent linear and adjoint models (TLM/AM) to propagate information about the misfit between the forecast and observa-
tions within an optimization window. In practice, particularly for coupled models, the TLM and adjoint are often difficult to
produce, and for some models are nonexistent in analytic form. Accordingly, a statistical data-driven alternative is also
employed and evaluated to determine its feasibility for a 4D-Var CDA system. Using experiments conducted with a coupled
atmosphere–ocean quasigeostrophic model, it is found that ensemble generation of flow-dependent error covariance statis-
tics can increase the accuracy of 4D-Var CDA. When observing all variables, the hybrid climatological/flow-dependent
B constructions outperform either independently. The use of a hybrid B matrix combined with a rapid updating ensemble
transform Kalman filter (RU-ETKF) using either strongly or weakly CDA resulted in lower overall RMSE. The ocean
component achieved its lowest RMSE when using a fully flow-dependent B matrix generated using 4D-ETKF and
using weakly CDA. These results show the importance of time scales and analysis update frequencies. The use of a statisti-
cally derived TLM/AM generated from the ETKF ensemble perturbations produces results similar to cases using the analyt-
ical coupled TLM/AM in 4D-Var.
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1. Introduction

Coupled data assimilation (CDA) is quickly growing in im-
portance as operational prediction centers around the world
transition to the use of fully coupled forecast models, with the
intention of transitioning to more seamless prediction be-
tween time scales ranging from weather (days to weeks) to
seasonal (weeks to months). The primary initialization strat-
egy used by most prediction centers for coupled models is to
initialize each model component (e.g., the atmosphere or
ocean) independently. As the CDA paradigm matures, a
key feature of CDA will be improved utilization of infor-
mation across the model components (e.g., across the air–
sea interface).

Coupled data assimilation can be implemented in many
ways, typically spanning from weakly coupled data assimilation
(WCDA), in which data assimilation is applied independently
for each coupled model component, to strongly coupled data
assimilation (SCDA), in which the coupled system is treated as a
single dynamical system so that the analysis can be formed by
using data across coupled model components (Penny et al.
2017). Penny et al. (2019) reviewed and summarized previous

literature on SCDA and then investigated a number of open
foundational questions using a coupled quasigeostrophic (QG)
model. In general, 4D-Var has been one of the most effective
DA techniques used in practice for operational numerical
weather prediction (NWP) (Janisková et al. 1999; Rabier et al.
2000; Gauthier et al. 2007; Rawlins et al. 2007). However,
Penny et al. (2019) found that when observations are sparser
the canonical strong-constraint 4D-Variational method (4D-Var)
generally underperforms due to its use of a climatological
error covariance to represent cross-domain atmosphere–ocean
interactions. This is in comparison to the Ensemble Kalman
Filter (EnKF), which estimates the forecast error covari-
ance dynamically. Hence, the results of Penny et al. (2019)
motivate further study to understand and improve the capa-
bilities of 4D-Var in the context of SCDA, particularly in the
presence of multiscale dynamics.

The background error covariance matrix is a key mecha-
nism of DA methods such as 4D-Var or the EnKF for infor-
mation transfer across the component models in SCDA
(Smith et al. 2017, 2018). The background error covariance
matrix (typically denoted B) was traditionally calculated using
errors from short forecasts sampled over a long historical
period. This “Climatological” background error covariance
matrix Bc provides a time-average statistical relationship be-
tween errors in each variable, but as a result cannot represent
transient state-dependent relationships. An alternative approach
is to resolve the “errors of the day” (Kalnay et al. 1997; Corazza
et al. 2003) by dynamically estimating the background error
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covariance matrix Bf using an ensemble forecast (Kalnay 2019;
Buizza 2019). Due to limitations in using such statistical cor-
relations at long distances, localization is an important tool
that can reduce or eliminate spurious correlations in covari-
ance matrices. This can also be used to limit the transfer of in-
accurate information across component models in CDA. The
current state-of-the-art in operational NWP is to combine
flow-dependent errors derived from an online ensemble fore-
cast with supplemental climatological statistics, generating a
hybrid covariance matrix Bh (Hamill and Snyder 2000; Lor-
enc et al. 2015). This hybrid formulation increases the rank of
the dynamic estimate, which is usually limited due to the use
of a relatively small sample of ensemble perturbations.

An additional technical constraint in the use of 4D-Var for
SCDA is that large-scale coupled systems typically do not have
a corresponding tangent linear model (TLM) and adjoint model
for the coupled atmosphere–ocean dynamics. These tools are
required by the most commonly used optimization methods
in order to minimize the 4D-Var cost function. Developing
the TLM and adjoint for a large-scale numerical model of the
atmosphere or ocean can be a challenging and tedious en-
deavor, and already serves as a barrier to applying 4D-Var in
practice. Even if each independent model has an associated
TLM and adjoint, in most cases the coupled Earth system
model does not. State-of-the-art component models of the at-
mosphere and ocean are usually coupled through a software
interface in order to form modern Earth system models, add-
ing further difficulty to producing a unified TLM and adjoint
for use in SCDA.

To enable the application of 4D-Var for general cases in
which an analytic or software-based TLM and adjoint cannot
be easily developed or maintained, we additionally consider an
alternative surrogate model based on statistical linear regression
(Lermusiaux and Robinson 1999; Pelc et al. 2012). To achieve
this, we use the multiple realizations of the system trajectory
produced by ensemble forecasts to create a statistical ensemble-
based TLM (ETLM). This type of approach has been investi-
gated in applications of increasing complexity. Frolov and
Bishop (2016) proposed a localized version of such a statistical
TLM called the local ensemble tangent linear model (LETLM)
applied to a linear wave advection model. This localization
helped to address issues of rank deficiency with the ETLM
when the ensemble size is insufficient for modeling applications
with larger degrees of freedom. Allen et al. (2017) and Bishop
et al. (2017) studied the performance of 4D-Var using the
LETLMwith a shallow-water model, and with an idealized cou-
pled Lorenz model, respectively. These works concluded that
the LETLM can be an accurate substitution of the analytic
TLM provided that the ensemble size is larger than the dimen-
sion of the local state vector. Frolov et al. (2018) applied the
LETLM to a more realistic model NAVGEM (the U.S. Navy’s
global atmospheric prediction model), comparing the ability of
the LETLM to predict the difference between two nonlinear
trajectories against a conventional software-based TLM. They
showed that the LETLM was generally more accurate than
the software-based TLM (partially due to the age of the TLM
software), though in their implementation the computational
cost was more expensive. This was then expanded upon in Allen

et al. (2020), which examined the challenges of applying the
LETLM to the high-resolution (18) NAVGEM. This paper
showed that the LETLM could overcome challenges like bal-
ancing ensemble size with the computational stencil size, and
upper-atmospheric propagation of fast-moving gravity modes.
They concluded by showing that the LETLM has higher skill
in the lower troposphere (below 700 hPa), but slightly lags in
the upper troposphere and stratosphere (700–2 hPa). Payne
(2021) proposed a hybrid of the LETLM and the analytical
TLM, using the LETLM to fill in for missing physical pro-
cesses that were not represented by the TLM. This was
proven to be cheaper to run than the LETLM, and when
using a very large ensemble, performed better than a pure
LETLM. Given the context of our simpler quasigeostrophic
application, we will consider both the ETLM and a variation
of the LETLM as replacements for the TLM and adjoint in
our investigation of 4D-Var SCDA.

Here, we extend the work of Penny et al. (2019) to further
advance the exploration of 4D-Var in its application for SCDA,
applied using the same MAOOAM coupled atmosphere–ocean
QG model configuration. We will explore a broader range of
options for constructing the background error covariance for
use in 4D-Var SCDA. We compare various covariance struc-
tures, including climatological, flow-dependent, and hybrid error
covariance matrices. Our primary tool for estimating flow-depen-
dent error covariance is the EnKF; however, there are multiple
options for implementing the EnKF in conjunction with the
4D-Var analysis cycle. We evaluate two different ensemble gen-
eration methods}one using a 4D-ETKF with an analysis win-
dow identical to 4D-Var, and another using a rapid-updating
3D-ETKF (RU-ETKF) that is applied multiple times within
the 4D-Var analysis window. We also compare various strat-
egies for localization across component models, including
none (i.e., SCDA), restriction to component domains (i.e.,
WCDA), restriction to individual geophysical variables, and re-
striction to individual modes. We further use two implementa-
tions of 4D-Var, one using a numerical implementation of the
analytic coupled atmosphere–ocean TLM and adjoint (which
are available for our coupled QG model), and another using
the regression-based ETLM/LETLM (to address scenarios in
which the TLM and adjoint are not available).

This study is intended to provide further understanding to the
application of 4D-Var for SCDA. The contents are structured as
follows: section 2 describes the methodology. Section 3 outlines
the experiment design, and section 4 presents the results. The
conclusions are provided in section 5.

2. Methods

a. The Modular Arbitrary-Order Ocean–Atmosphere Model

We use the Modular Arbitrary-Order Ocean–Atmosphere
Model (MAOOAM; De Cruz et al. 2016) for all experiments
in this study. This model had its origins in the Ocean-Atmosphere-
Quasi-Geostropic-Wind Stress model (OA-QG-WS v1;
Vannitsem 2014), which coupled a QG atmospheric model
(Charney and Straus 1980) with a QG ocean model (Pierini
2011). This earlier coupled model used 12 atmospheric and
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4 oceanic modes. This was then extended to 20 atmospheric
modes in OA-QG-WS v2 (Vannitsem and De Cruz 2014) to
include model variables from Reinhold and Pierrehumbert
(1982) and increase model resolution. This was followed by the
VDDGmodel (Vannitsem et al. 2015), which extended the range
for coupled atmosphere–ocean predictions by producing low fre-
quency variability in the atmosphere and ocean. MAOOAM
adapts the VDDG model by expanding the dynamical fields to
allow for an arbitrary number of basis functions (or modes). The
model includes a two-layer QG atmospheric component coupled
both thermally and mechanically with a single layer QG ocean
component. The coupling between the two components includes
wind forcings, radiative and heat exchanges.

The motion for the atmospheric streamfunction fields c1
a at

250 hPa and c3
a at 750 hPa, and the vertical velocity equations

are defined by

d
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Here, the Coriolis parameter ( f ) is linearized around the value
f0. This is estimated at the f0 = 458. The parameters k′d and kd
quantify the friction between the atmospheric layers, and be-
tween the ocean surface and the atmosphere, respectively.

The motion for the streamfunction of the ocean layer (co),
has the following equations:

d
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The reduced Rossby deformation radius (LR), the density (r),
the depth (h), and the friction (r) are represented at the bottom
of the active ocean layer. The impact of the wind stress is repre-
sented by the right-hand side of the equation. This is modulated
by the drag coefficient of the mechanical ocean–atmosphere cou-
pling, d = c/(rh). Terms Ta and To represent the time evolution
of the atmosphere and ocean temperatures, respectively. These
are given by the following equations:
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(5)

In these equations, the heat capacities of the atmosphere and
active ocean layers are given by ga and go. The atmospheric

barotropic streamfunction is given by ca � (1/2)(c1
a 1 c3

a). The
ocean–atmosphere interface heat transfer coefficient is given by
g, with s representing the (constant) static stability of the atmo-
sphere. A more comprehensive description on the MAOOAM
model can be found in De Cruz et al. (2016).

Here, we symbolize the coupled dynamical system with the
mapping:

xt � Mt(xt21), (6)

where Mt is the propagation of the dynamics over one model
time step dt, and xt is a state vector of time-dependent coefficients,
both defined at time t. We use the configuration of Vannitsem
and Lucarini (2016), which has spectral truncation levels of 23 2
for the atmosphere, and 2 3 4 for the ocean. The coupled drag
coefficient for this configuration produces fairly strong low fre-
quency oscillations in the coupled dynamics. The state vector with
this configuration has Na = 20 and No = 16 spectral modes for the
atmosphere and ocean, respectively. Both Na and No comprise
streamfunction (u) and temperature (c) modes. One model
time unit (MTU) corresponds to about 2.7 h, while our model
time step dt = 0.37152 corresponds to about 1 h.

b. Background error covariances

We implement 4D-Var with three different background error
covariance estimates: 1) the traditional static climatological
background error covariance Bc, 2) a fully flow-dependent
background error covariance Bf estimated from a cycled
ETKF running in tandem with the 4D-Var, and 3) a hybrid
background error covariance Bh defined as

Bh � aBc 1 (1 2 a)Bf : (7)

The static Bc can be recovered using a = 1, while the fully
flow-dependent Bf can be recovered using a = 0. In our hybrid
experiments, we use a = 0.5, which is in line with Penny et al.
(2015) and Bonavita et al. (2015).

We generate our climatological Bc matrix from a 30-yr data
assimilation “reanalysis” using the RU-ETKF (this will be dis-
cussed in section 2e). The ensemble perturbations are averaged
over the time domain in the following form:

Bc � 〈XT
b (t) · Xb(t)〉, (8)

where the columns of Xb(t) contain the ensemble perturba-
tions produced by the RU-ETKF 6-hourly forecasts at each
time t, and the statistics are averaged over all t.

c. Localization

Localization methods are designed to reduce or omit spurious
correlations in the background error covariance matrix B. Typi-
cally, it is assumed that distant correlations in space are less
accurate when using small sample sizes, and improve as the
sample size increases. However, the concept of localization
can be applied more generally to manually reduce correla-
tions that are either known or expected to have lower accu-
racy. Such approaches have been applied implicitly in the
design of WCDA systems.
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Localization is applied to the background error covariance
matrix as

B � L � Bx, (9)

where L is the localization matrix, x ∈ {c, f, h}, and �
represents the Schur (element-wise) product. We use the
following localization approaches (see Fig. 1 for a visual
representation):

• None: We implement SCDA by omitting any localization of
the B matrix, keeping all atmosphere–ocean cross covariances.

• Single domain: We implement WCDA by applying locali-
zation to the B matrix so that the atmosphere–ocean cross
covariances are set to zero.

• Single variable: In this case, we localize the B matrix so
that all the cross covariances between variable types (i.e.,
ca, ua, co, uo) are set to zero.

• Single mode: In this case, we localize the B matrix so that it is
diagonal, with all covariances between individual variables set
to zero.

d. Four-dimensional variational data assimilation
(4D-Var)

Four-dimensional variational (4D-Var; Talagrand and
Courtier 1987) DA attempts to fit an optimal trajectory to
all observations within a short analysis window by adjusting
the initial conditions of a numerical forecast model. The
4D-Var algorithm is formulated by minimizing a cost func-
tion that is defined over a short time window. Its individual
terms are weighted using the estimated error characteristics
of the forecast dynamics and the observations. Its “strong con-
straint” form assumes a perfect model representation of the
dynamics, which we use in conjunction with the incremental
formulation of 4D-Var (Courtier et al. 1994). The basic formu-
lation of the incremental 4D-Var cost function is implemented
with the initial state increment dx � x0 2 xb0 as the control
variable:

J(dx) � 1
2
(dx)TB21(dx) 1 1

2

∑N
i�0

[H(dx) 2 di]TR21
i [H(dx) 2 di]T:

(10)

Here, xb0 represents the initial background state (i.e., a fore-
cast initialized from the previous analysis cycle), while B is
the background error covariance, and Ri is the observation er-
ror covariance given at time t = ti; di � yi 2H i(xbi ) is the in-
novation (or departure), and H is the linearized observation
operator. For each time ti, the nonlinear model operator Mi

propagates the state xt from time t = t0 to t = ti, such that
xi �Mi(x0). The observation vector yi, which models the
spectral modes directly, and the observation operator H i,
are both given at time t = ti.

Because 4D-Var is a nonlinear optimization, it is typically
solved via nested loops. In the outer loop, a nonlinear model tra-
jectory is generated, and the innovation {yi 2H i[Mi(xbi21)]} at
each observation time within the analysis window is calculated,
where xb represents the initial, and updated, background trajec-
tory. In the inner loop, the 4D-Var cost function is minimized us-
ing the linearized dynamics in order to find an improved estimate
of the initial conditions that allow the forecast model to best fit
the observations. In this inner loop, we optimize the cost function
J(dx) by setting the gradient $Jdx equal to zero:

=J(dxL) � B21(dxL) 2 ∑N
i�0

MT
i H

T
i R

21
i [H(dxL) 2 di]T � 0,

(11)

where M is TLM and MT is the adjoint. We use the BIConjugate
Gradient Stabilized iterative method (BI-CGSTAB; van der Vorst
1992), which solves Eq. (11) after converting it to the form
Ax � b. Here, dxL represents the increment between the
analysis and background states (x 2 xb) and H is the linear-
ized observation operator, where L is the outer loop counter.
After convergence, the inner loop is complete and the outer
loop nonlinear operations are repeated from the new improved
estimate of the initial conditions. The outer loop reruns a back-
ground trajectory from the new initial condition solution. This
is then re-minimized to update the initial condition. Each varia-
tional method uses three outer loops.

e. Ensemble transform Kalman filter (ETKF)

The ensemble transform Kalman filter (ETKF) is an en-
semble data assimilation method which updates an ensemble

FIG. 1. Each subplot shows how each localization structure looks. “No Localization” treats the coupled model as a single dynamical
system (i.e., SCDA). Localization within a “Single Domain” separates the atmosphere and ocean, while cross-domain interactions are
ignored (i.e., WCDA). “Single Variable” focuses only on temperature or streamfunction within each domain. “Single Mode” focuses on
individual model modes. Focus cells are shown in black.
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of model trajectories given sequential observations. We use
two versions of the ETKF, where one is updated over an as-
similation cycle, and the other is sequentially updated. This is
investigated to determine whether taking all observations, or
just a singular observation, greatly impacts the results in
CDA. The first is a 4D-ETKF as presented by (Hunt et al.
2004, 2007; Harlim and Hunt 2007), but without spatial locali-
zation. The 4D-ETKF uses an analysis cycle window that
matches that of the 4D-Var. This version of the ETKF assimi-
lates all observations over an analysis cycle by forming Yb,
which concatenates observations throughout the analysis cy-
cle window. We also consider an alternative ETKF, which we
call the “rapid update” ETKF (RU-ETKF). This is a 3D-
ETKF that performs an analysis every time a new set of ob-
servation becomes available, which occurs multiple times
within the 4D-Var analysis window.

The analysis weights (wa), transform matrix (Wa), and anal-
ysis error covariance matrix (Pa) are calculated as

Pa � k 2 1
r

I 1 (Yb)TR21Yb
[ ]21

, (12)

wa � PaYbR21(yo 2 yb), (13)

Wa � [(k 2 1)Pa]1/2: (14)

The matrix Yb � HXb represents the background ensemble
perturbations transformed to the observation space, with yo

representing the vector of observed quantities, and yb � Hxb

representing the ensemble mean state transformed to the ob-
servation space. Matrices I and Pa represent the identity and
the ensemble analysis covariance matrix, respectively. The
parameter r = 0.01 is a multiplicative inflation factor that can
be used to manually increase the estimated background error
covariance [in line with Penny et al. (2019)], and k represents
the number of ensemble members. The analysis mean and
analysis ensemble members are then computed as follows:

xa � xb 1 Xbwa, (15)

X̂
a � XbWa 1 xa1T, (16)

where the columns of X̂
a
provide the new ensemble of analysis

state vectors that can be used as initial conditions for a subse-
quent forecast. Here, the 1 refers to a column vector of ones.

f. Statistical tangent linear model

The TLM and its adjoint are important tools used by 4D-Var
to formulate a computationally tractable approach for nonlinear
optimization. In practice, the need for a TLM and adjoint can be
problematic when they are not readily available as software, and
due to the suboptimal availability, TLM and adjoint models can
be inaccurate. For situations like these, a statistical implementa-
tion to the TLM and adjoint may prove to be a useful alternative.
Here, we will consider a statistical TLM generated from an
online ensemble DA procedure, which we call the ETLM.
Many operational weather centers already use ensemble
DA methods, either explicitly or for the purpose of generating

hybrid background error covariance statistics, and so such en-
semble statistics are typically available in practice.

As a linear transformation exists so that an ensemble of
perturbations Xt21 of a nonlinear state xt21 can be propagated
from time (t–1) to time t:

Xt � M(t,t21)Xt21, (17)

XtX
T
t21 � M(t,t21)Xt21X

T
t21, (18)

M(t,t21) � XtX
T
t21[Xt21X

T
t21]21: (19)

The matrices Xt and Xt21 contain column-wise the ensemble
perturbations at times t and t 2 1, respectively. Here, the ini-
tial ensemble perturbations are given by taking the ensemble
of model states, removing the ensemble mean, and dividing
by the standard deviation for each ensemble member (Allen
et al. 2017) such that

Xt � diag
1
rcv

( )
(Xb

t 2 xb
t 1

T), (20)

where scv is the vector of climatological standard deviation
for each model variable (see Fig. 2).

Through a reformulation, the ETLM can also be computed
by applying the matrix inversion in the ensemble subspace,
which may be preferred when the ensemble size is smaller
than the system dimension:

M(t,t21) � Xt[XT
t21Xt21]21XT

t21: (21)

The LETLM was developed and demonstrated by Frolov
and Bishop (2016), Bishop et al. (2017), and Allen et al.
(2017) as a practical implementation of the ETLM for opera-
tional DA systems in which the number of degrees of freedom
of the model far exceeds the feasible ensemble size. The dif-
ference between the LETLM and ETLM is the localization
variable. This changes the coupling dynamics where the locali-
zation of the LETLM uncouples the TLM. The method we
use here adapts the formulation presented by Allen et al.
(2017) to apply to isolated spectral modes:

M(t,t21)(p) � SpXt[(Svol
p Xt21)T(Svol

p Xt21)]†(Svol
p Xt21)T, (21)

where M(t,t21)(p) denotes the LETLM matrix determining the
linear propagation of small perturbations from time t 2 1 to
t for spectral mode p. The matrix operators Sp and Svol

p deter-
mine which spectral mode is selected (which are of the size
13 model dimension size). The latter additionally determines
its influence range, which is done by selecting the mode and
influential modes surrounding it. The notation [A]† indicates
the pseudoinverse of matrix A. This can be reformulated as

M(t,t21)(p) � SpXt(Svol
p Xt21)T[(Svol

p Xt21)(Svol
p Xt21)T]21, (23)

in the same manner as that of Eqs. (19) and (21). This refor-
mulation reduces the matrix dimension for the matrix inver-
sion operation. In Eq. (22), the pseudoinverse is taken of a
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k 3 k matrix (where k is the ensemble dimension), while
Eq. (23) transforms this into a scalar inverse.

To propagate perturbations using the LETLMmatrix we use

dxt �
∑N
p�1

[Sp]TM(t,t21)(p)[Svol
p dxt21], (24)

where dxt is a perturbation at time t where the equation is
cycled over each mode via a summation. As the notion of spatial
locality is eliminated in the spectral formulation of the dynamics,
we consider the localization operations Sp and Svol

p as an abstrac-
tion of the localization concept, and simply select the current
spectral mode without any influence from other spectral modes.

3. Design of experiments

We conduct experiments exploring a range of configurations
of the 4D-Var CDA. We use two control experiments, 4D-Var
and 3D-Var-FGAT (Lee et al. 2004), both using a climatological
background error covariance matrix. The 3D-Var-FGAT is im-
plemented by replacing the analytical TLM in the traditional 4D-
Var with the identity matrix. These control experiments provide
a point of reference for all further experiments.

For all experiments, we use a 6-h analysis cycle (unless stated
otherwise). The motivation behind this analysis cycle length
comes from Fisher et al. (2011). This comes from two sides, the
first being that 4D-Var relies on long windows lengths so the tan-
gent linear model, and its adjoint, can generate flow dependence
between innovations and the initial background error covariance
matrix, the second being that this is NOAA’s operational analysis

time scale. Each analysis cycle contains observations sampled at
6 separate time steps, one time per hour, based on the model
time step of dt = 0.37152 corresponding to approximately 1 h.
Results are shown using the root-mean-square error (RMSE),
as a percentage of the climatological variation (CV) of each
model variable (which is calculated as the longtime time stan-
dard deviation of the corresponding variable), of the full anal-
ysis trajectory against a nature run. Excluding the final
experiments, all methods observe all spectral modes directly,
with observation errors of 0.13 scv.

Our investigation commences by examining how the formula-
tion of the coupled atmosphere–ocean background error covari-
ance matrix impacts the 4D-Var CDA.We compare 4D-Var and
3D-Var using climatological background covariance matrices
generated from different time periods to evaluate the sensitivity
of the variational methods to changes in Bc. We introduce noise
to the climatological background error covariance matrix by gen-
erating one estimate over a short time frame (1 year), and the
other over a longer time frame (30 years). We also examine flow-
dependent and hybrid background error covariance matrices
(Rodwell et al. 2016) to investigate how incorporating temporal
changes in the background covariances can have an impact on re-
sults. The flow-dependent error covariance Bf is evaluated using
two different ensemble generation methods (RU-ETKF, and
4D-ETKF). All ensemble-based experiments use 40 ensemble
members, except for a sensitivity study examining the impact of
reducing the ensemble size (40, 20, 10). The ensemble generation
method and ensemble size affect the generation of Bf , and as
a consequence also affect Bh. We also examine the impact of
localization on the coupled atmosphere–ocean background error

FIG. 2. The climatological variability scv of (left) the atmosphere and (right) the ocean at for
each variable, calculated over a 30-yr model integration.
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covariance matrix by using a range of different localization strate-
gies: 1) none, which emulates SCDA; 2) localizing to only the at-
mosphere or ocean (ensuring no atmosphere–ocean interaction),
which emulates WCDA; 3) by variable, with no interaction be-
tween different model variable types; and 4) single mode, with
no interaction between modes.

The statistical ETLM and LETLM surrogate models are
explored in order to provide a potential alternative for imple-
menting 4D-Var CDA in cases where an analytic or software-
based TLM and adjoint are not available. To generate ensemble
statistics for the ETLM methods, we use either the cycled
RU-ETKF or the 4D-ETKF, both using ensemble forecasts
with 40 members.

Our final experiments examine the impact of reduced ob-
servation coverage. We consider extreme scenarios where ob-
servations are available either only in the atmosphere or only
in the ocean. We consider the scenario in which there are only
atmospheric observations to be most consistent with the
real-world scenario, in which there are plentiful satellite ob-
servations of the atmosphere but limited in situ observa-
tions of the subsurface ocean. The reverse case is provided
for completeness.

4. Results

a. Control experiments

We first examine the control experiments (Fig. 3). We include
results from the 3D-Var and 4D-Var, both using the long-range
climatological Bc, as well as the 4D-ETKF and the RU-ETKF
ensemble-based methods, compared over 5000 assimilation
cycles (6 h per cycle, approximately 3.4 years total) on a strongly
coupled system. The 4D-ETKF, which assimilates observations
indexed at multiple times within the analysis cycle window,
produces the lowest RMSE in the ocean. In contrast, the
RU-ETKF, which assimilates observations every time they
occur within the analysis cycle window, has the lowest
RMSE in the atmosphere. We emphasize that the primary
difference between these is the update frequency, and that
the lower frequency updates of the 4D-ETKF may favor the
slower time scales corresponding to the ocean dynamics,

while the RU-ETKF may favor the faster time scales pre-
sent in the atmospheric dynamics. The variational methods
produce slightly higher RMSE (approximately 33% in the
atmosphere and 1% in the ocean) compared to the leading
ETKF method in each domain.

b. Impact of background error covariance on
4D-Var CDA

We find that the 4D-Var CDA can be very sensitive to the
specification of the background error covariance matrix. Com-
parisons between 4D-Var using a background error covariance
matrix generated from a short training dataset versus another
generated from a longer training dataset indicate that the shorter
training set is sufficient for the fast-time-scale atmospheric error
dynamics. However, this is not sufficient for the ocean, which
benefits from the use of the longer training set.

In the atmosphere, the RU-ETKF and 4D-ETKF control
methods produce the lowest and highest RMSE as a percentage
of CV, respectively (Fig. 4). A summary of the hybrid and flow-
dependent experiments can be found in Table 1. It appears that
the tuning of the Bc matrix is particularly important for the
slower components of the coupled system. The control methods
using Bc generated from either short or long training datasets
have similar (within 10%) RMSE for the atmosphere, while for
the ocean the RMSE is reduced by about one order of magni-
tude due to the use of the longer training dataset. The use of the
longer training dataset in the ocean also improves the accuracy
of the variational methods to a degree that they outperform the
4D-ETKF.

The hybrid methods are impacted by both the length of
the training dataset for Bc and also the type of ETKF used
for dynamic ensemble generation. The use of the RU-ETKF
as the dynamic ensemble generator reduces the RMSE in
the atmosphere for the variational methods. This applies for
both formulations of Bc.

Overall, the most accurate methods in the atmosphere are the
RU-ETKF and the 4D-Var-BRU

h using the long training method.
Though the 4D-ETKF underperforms the RU-ETKF in this
case, it still improves the RMSE of the variational methods
when used as an ensemble generator when compared to the

FIG. 3. The analysis RMSE for all (left) atmosphere modes and (right) ocean modes, observing the full coupled state. The following control
methods are shown: 3D-Var (green) and analytical 4D-Var (purple) both using the long-range Bc, the RU-ETKF (blue), and the 4D-ETKF
(red). Analysis RMSE (temporal mean shown at the top of each subplot) using a moving average of 442 time steps is shown for the last
20000 model time steps.

G OODL I F F AND P ENNY 2449SEPTEMBER 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:33 PM UTC



variational control methods which use Bc. An example of how
the ensemble background covariance matrices compare with the
climatological background correlation matrix can be found in
Fig. 5. Here, from left to right we show the correlation matrices
given by the RU-ETKF, the 4D-ETKF, and the climatology.
This shows the differences in how the RU-ETKF and 4D-ETKF
generate correlations (and thus the Bmatrix).

As the 4D-ETKF is more accurate for the ocean, the hybrid
methods using the 4D-ETKF as an ensemble generator have
a lower RMSE than those using the RU-ETKF in the ocean.

Though the hybrid methods do outperform the control meth-
ods using Bc trained on the shorter training dataset, the meth-
ods that perform best for the ocean are the 3D-Var and
4D-Var controls using Bc trained on the longer dataset, and
the 4D-Var-B4D

h hybrid method. As the Bc matrices computed
from the short and long training datasets perform similarly in
the atmosphere, but the longer training datasets produce
more accurate results for the ocean, all remaining experi-
ments will use the longer training set for determining the cli-
matological error covariance Bc.

FIG. 4. The (30-yr) analysis RMSE as a percentage of climatological variation for long and short training datasets to
generateBc for (left) the atmosphere and (right) the ocean, observing the full coupled state. In each plot, the left column
contains the control methods, and the second and third columns contain the short and long training methods at time
scales of 1 and 30 years, respectively. Here, the long-trained Bc matrix outperforms the short-trained Bc in both the
atmosphere and the ocean. The 4D-Var methods are given by circles, the 3D-Var methods are given by the diamonds,
and the ETKFs are given by the crosses. SR- and LR- reference the short-range and long-range Bc respectively.

TABLE 1. The notation for the background error covariance matrix in hybrid and flow-dependent configurations 3D/4D-Var.

Data assimilation method

3D-Var 4D-Var

Background error covariance formulation

Ensemble generator Hybrid Flow dependent Hybrid Flow dependent

4D-ETKF 3D-Var-B4D
h 3D-Var-B4D

f 4D-Var-B4D
h 4D-Var-B4D

h

RU-ETKF 3D-Var-BRU
h 3D-Var-BRU

f 4D-Var-BRU
h 4D-Var-B4D

h
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c. Impact of ensemble size on 4D-Var CDA

Generally, a larger sample size of ensemble members will
improve the accuracy of ensemble-based DA methods. How-
ever, running large ensembles of complex numerical forecast
models is computationally expensive. It is typically only feasi-
ble to run an ensemble of numerical forecast integrations
whose size is only a small fraction of the model dimension. In

Fig. 6, we compare the ensemble generators RU-ETKF and
4D-ETKF in our variational hybrid methods with 10, 20,
and 40 ensemble members. As noted by Vannitsem and
Lucarini (2016), the number of nonnegative Lyapunov
exponents of this MAOOAM configuration is about 20,
which implies 10 members is insufficient for the ETKF
methods, 20 members should be sufficient [as shown by

FIG. 5. Example background error correlation matrices after 100 assimilation cycles generated by three different methods: (left) the en-
semble method using the RU-ETKF, (center) the ensemble method using the 4D-ETKF, and (right) the climatological background error
covariance.

FIG. 6. The analysis RMSE as a percentage of climatological variation for 3D/4D-Var using the RU/4D-ETKF
with different ensemble sizes for (left) the atmosphere and (right) the ocean, observing the full coupled state. The Bf

methods when generated by the 4D-ETKF diverge, while the other methods decrease in RMSE as the ensemble size
decreases. Only the best performing methods are shown in the plot to highlight the differences in the most accurate
methods.
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Penny et al. (2019)], and 40 members should guarantee that
the ETKF is nondivergent. Here, our variational methods
use either a climatological Bc, the hybrid Bh, or a fully flow-
dependent Bf .

Comparing the control ETKFs, the RU-ETKF has a lower
RMSE in the atmosphere, and the 4D-ETKF has a lower
RMSE in the ocean. In the atmosphere, the RU-ETKF has
higher accuracy than both the 3D/4D-Vars when using either
20 or 40 ensemble members. We also notice the 4D-ETKF
diverges with 10 ensemble members. In the ocean, the
4D-ETKF is the most accurate ETKF with 40 ensemble mem-
bers, followed by the RU-ETKF with 40 ensemble members.
Comparisons between the atmosphere and the ocean for
ensemble based CDA shows the atmosphere needs only
20 members for accurate results, while the ocean further ben-
efits from a larger ensemble size.

Comparing the variational methods in the atmosphere, we
first note that the 3D/4D-Var using B4D

f generated with the
4D-ETKF have a large RMSE in comparison to the other
methods (over 10% of the climatological variation). When
instead using the RU-ETKF as the ensemble generator, we
see that the 3D/4D-Var using a flow-dependent BRU

f has a
lower RMSE than the 3D/4D-Var using the hybrid BRU

f . This
BRU

f more accurately describes the system dynamics com-
pared to when the Bc was introduced within a hybrid covari-
ance. The performance of 3D/4D-Var in the atmosphere is
not noticeably different across any of the ensemble sizes
tested.

In the ocean, where the 4D-ETKF ensemble generator out-
performs the RU-ETKF, we see the 3D/4D-Var using the
hybrid B4D

f results in the lowest RMSE out of all the hybrid
methods. The 3D/4D-Var using flow-dependent B4D

f still
significantly underperforms compared to all other methods,
which implies that the 4D-ETKF needs the information
from the climatological Bc, even in the ocean in order to
incorporate missing system dynamics. Comparing across differ-
ent ensemble sizes}as expected, using 40 members produces
the lowest RMSE for all hybrid variational methods. For
consistency, all remaining experiments will use 40 ensemble
members for both the RU-ETKF and 4D-ETKF ensemble
generators.

d. Impact of localization on 4D-Var CDA

Localization can have a significant impact on the perfor-
mance of variational DA methods. We have already noted
the importance of the formulation of the background error
covariance matrix on 4D-Var CDA. Localization further
modifies the background error covariance matrix by zeroing
out correlations that might likely be the result of statistical
noise.

For experiments in the atmosphere, we see no discernible
difference between strong (SCDA) and weak (WCDA) local-
ization, but the RMSE increases as the localization becomes
stricter. There appears to be no improvement in the atmo-
spheric RMSE due to cross-domain localization (Fig. 7).
Given that strong (SCDA) and weak (WCDA) localization
produce similar results for variational methods, this implies

that the cross-system covariances have minimal impact on the
RMSE in the atmosphere. When introducing more “strict”
localization, for example by removing cross-variable or cross-
modal covariance, the RMSE increases. Thus, there are cross
correlations between variables and between individual modes
that are needed to produce the most accurate background
error covariance matrix. Comparing these localized varia-
tional methods to the control methods, both variational
methods are improved by the majority of the localization
approaches in conjunction with a hybrid or flow-dependent
B matrix. Though the RU-ETKF is more accurate than
3D/4D-Var using Bc in the atmosphere, the hybrid methods
produce results that are either similar to or outperform the
RU-ETKF. Overall, in the atmosphere, the 3D/4D-Var using
BRU

f have the lowest RMSE when using strong (SCDA) or
weak (WCDA) localization.

For the ocean experiments, weak (WCDA) localization
appears to reduce RMSE compared to strong (SCDA) localiza-
tion. The stricter localization also results in lower RMSE than
the control methods and the strong (SCDA) localization. This
implies that, for the given time scales of the analysis cycle and
observing frequency, the cross-domain covariances can degrade
the accuracy of the ocean state estimate. However, utilizing the
cross-variable interactions between the temperature and stream-
function, and the cross-modal interactions, helps to reduce the
RMSE. In the ocean, localization is needed for the hybrid meth-
ods to improve the RMSE of the control variational methods.
Using the 4D-ETKF as an ensemble generator, the hybrid B4D

h

improves on the variational control methods when using weak/
variable/single mode localization. For the ocean, this implies that
some cross-system covariances degrades performance. Though
localization improves the RMSE in the ocean, using a localiza-
tion that is stricter than the weak (WCDA) case decreases the ac-
curacy of the methods. When generating the ensemble with the
RU-ETKF, the RMSE increases due to the RU-ETKF not per-
forming as well in the ocean as it does in the atmosphere. This
gives all RU-ETKF based hybrids a higher RMSE than the vari-
ational control methods. It can also be seen that the use of a
flow-dependent Bf in the ocean degrades the performance com-
pared to the hybrid methods.

e. Use of ensemble tangent linear models in 4D-Var CDA

Ensemble-based TLMs are shown here to produce results
similar to analytical TLMs in 4D-Var CDA. As previous
sections have shown, the RU-ETKF and the 4D-ETKF excel
in the atmosphere and ocean, respectively. Consequently,
using the more accurate ensemble generator provides a
better ETLM/LETLM prediction for the respective domain.
The 4D-Var implementations using ETLM and LETLM
perform well in comparison to the conventional 3D/4D-Var
methods (see Fig. 8). When comparing ETLM/LETLMs, in
the both the atmosphere and the ocean, both methods per-
form similarly to the analytical TLMs across all localization
parameters. Just as with Fig. 7, where the flow-dependent
background error covariance Bf generated from the 4D-ETKF
does not perform well, the corresponding ETLM/LETLM
methods perform about as poorly. Outside of this setup, all
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ETLM/LETLM methods give an approximate estimation
of the analytical TLMs, giving similar RMSEs when used
within 4D-Var. In the atmosphere, the most accurate meth-
ods are those using the flow-dependent covariance matrix
BRU

f , under a strong (SCDA) or weak (WCDA) localization
setup. In the ocean, the most accurate methods are those us-
ing the hybrid background error covariance matrix B4D

h with
weak (WCDA) localization. Overall, the differences in sys-
tem dynamics have different demands of each method, and
so each method has benefits in either system.

f. Impact of sparse observations on 4D-Var CDA

Next we examine the use of a sparser observing system. In
practice, there are typically many more observations available
of the atmosphere compared to the ocean. Our investigation
here will focus on using either only atmosphere observations,
as an idealized extreme of the realistic scenario, or only
ocean observations. Using this approach, we can test how
each CDA method updates the unobserved component of
the coupled system. Assimilating only observations in the
atmosphere, the RU-ETKF diverges in the ocean, meaning
numerical instabilities cause the forecast model solution to
“blow-up” (Gottwald and Majda 2013). This in turn has an

effect on all methods that use the RU-ETKF as an ensemble
generator (see Fig. 9).

Due to the divergence of the RU-ETKF in the ocean, and
the 4D-ETKF being stable and having a lower RMSE, the
variational methods in the atmosphere are outperformed by
methods which use the 4D-ETKF for ensemble generation.
Thus in the atmosphere, 4D-Var methods which use the
RU-ETKF have an increased RMSE, this gives some indica-
tion of how sensitive the ETLMs and hybrid methods are to
the ensemble generator. In terms of localization, atmospheric
localization all performed similarly, with weakly coupled
localization giving slightly better accuracy. In the ocean,
though the 4D-Var implementations using the ETLMs are
approximately as accurate as those using the analytical TLM,
the results indicate that they are still a viable replacement
when a coupled atmosphere–ocean analytical TLM is not
available. When only observing atmospheric observations,
SCDA underperforms in comparison to the other forms of
localization. In general, for this coupled system using only
atmospheric observations, using the 4D-ETKF ensemble
generator with a weak localization setup can give total sys-
tem results equivalent to, or better than, the control varia-
tional methods.

FIG. 7. The analysis RMSE as a percentage of climatological variation for the variational methods under different
localization radii for (left) the atmosphere and (right) the ocean, observing the full coupled state. In the atmosphere,
the strongly/weakly coupled BRU

h methods have the lowest RMSE, while when using B4D
f , the weakly coupled meth-

ods have the lowest RMSE. The 4D-Var methods are given by circles, the 3D-Var methods are given by the dia-
monds, and the ETKFs are given by the crosses. The B4D

f diverges in the atmosphere and is not shown.
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We contrast the previous result with an experiment ob-
serving only the ocean variables (see Fig. 10). First, there is
a significant increase in RMSE in the atmosphere. All
methods have a high RMSE (with the 4D-ETKF perform-
ing the most accurately), which is approximately one–two
orders of magnitude higher than when observing the full
coupled state. In the ocean, the RU-ETKF produces a
slightly lower RMSE than the 4D-ETKF. The effect of
localization on these methods is different in the ocean. The
methods with the lowest RMSE are those that use the
4D-ETKF ensemble generator B4D

f . As localization becomes
stricter, the RMSE increases. When using the RU-ETKF, the
opposite occurs. As the localization becomes stricter, the
RMSE decreases. This points to an important distinction
in the application of SCDA versus WCDA (and more strict
localization), in which the time scale and frequency of the
analysis updates is critically important.

The 4D-Var using the ETLM produces good agreement
with the 4D-Var using the analytical TLM in the ocean, but
as the atmosphere diverges with both ensemble generators,
the ETLM methods do not perform well in the atmosphere.
Thus, we reiterate that the performance of the 4D-Var
methods using the ETLM is highly dependent on the en-
semble generator used to produce the inputs for the calcu-
lation of the ETLMs.

To expand on the above results, we examine how the
SCDA and WCDA systems that use a flow-dependent Bf ma-
trix reacted to an increase in observation frequency. By focus-
ing on Bf , we remove the need to tune a climatological Bc.
Here we increase the analysis frequency from once every 6 h
to once every 1.5 h, and also increase the observation fre-
quency from hourly to every 15 min, in order to maintain the
same number of observations in each analysis cycle.

In the variational control cases, the Bc matrix from the previ-
ous experiments is used. The 3D/4D-Var controls increase in
RMSE with the increased analysis frequency (Fig. 11). This indi-
cates that the Bc from the previous experiments likely requires
retuning for the higher analysis update frequency. In terms of the
ETKFs, the RU-ETKF decreases RMSE in the atmosphere, but
increases in RMSE in the ocean, while the 4D-ETKF shows only
a slight improvement in RMSE.

As we increase the analysis update frequency, the cross
atmosphere–ocean dynamics in the background error covariance
matrix, due to the use of SCDA, appear to become more im-
portant for 4D-Var CDA. All 4D-Var methods that use the
4D-ETKF as the ensemble generator produce improved
RMSE in both the atmosphere and the ocean. For WCDA,
while all methods show a small decrease in RMSE in the
atmosphere, there is a significant increase in RMSE in the
ocean, indicating a destabilizing imbalance for the coupled

FIG. 8. The analysis RMSE as a percentage of climatological variation for the variational methods and the
ETLM/LETLM’s estimation of the analytical TLM in a variational setup for (left) the atmosphere and (right) the ocean,
observing the full coupled state. The ETLM/LETLMs provide a good estimation of the analytical TLM methods inside
all variational setups. The 4D-Var methods are given by circles, the 3D-Var methods are given by the diamonds, and the
ETKFs are given by the crosses. The ETLMs are giving by the triangle symbols, and the LETLMs are given by the
square symbols. Since B4D

f diverges in the atmosphere, the results are not shown.
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system dynamics (Greybush et al. 2011). These results indi-
cate trade-offs that are present when deciding on the design
of a CDA system. The traditional 6-h update intervals used for
the atmosphere may not be ideal, particularly for the imple-
mentation of SCDA 4D-Var. The results imply that SCDA
4D-Var may be most effective as observations are collected
and analyzed more frequently than is the current practice.

5. Conclusions

The 4D-Var data assimilation (DA) method was applied in
a coupled atmosphere–ocean quasigeostrophic model setting
in order to investigate the challenges in using 4D-Var for
strongly coupled data assimilation (SCDA). We investigated
a range of configurations to identify sensitivities of the
4D-Var algorithm in this context, including various methods
for formulating the background error covariance matrix, dif-
ferent localization strategies, and different observing network
designs. For SCDA, a tangent linear model (TLM) and ad-
joint model are not always readily available [e.g., coastal
ocean–biogeochemical (Goodliff et al. 2019), and space
weather (Lang et al. 2017)]. Due to the difficulties in producing
a TLM and adjoint model for large-scale coupled atmosphere–
ocean models, we also considered the use of a statistical regres-
sion-based TLM and adjoint within 4D-Var. The background

error covariance matrix appears to play a significant role in
4D-Var SCDA. The flow-dependence of the background error
covariance affects the assimilation accuracy. It helps to mod-
ify the climatological covariance by applying a hybrid for-
mulation; this led to improvements in analysis RMSE. For
the atmosphere, we found that the use of a hybrid back-
ground error covariance formulated using a rapid updating
3D-ETKF (RU-ETKF) produced the largest reduction to
RMSE. As the atmospheric dynamics operate on faster time
scales than the ocean, having the ETKF provide flow-dependent
updates to the covariance matrix tended to improve the per-
formance of 4D-Var. For the ocean, generating the hybrid
background error covariance using the 4D-ETKF provided
a decrease in RMSE over the control methods, but localiza-
tion was needed. In this case, the cross-system error covari-
ance did not provide a boost in accuracy in the atmosphere,
but did decrease the RMSE in the ocean in comparison to
the climatological control methods. A localization structure
emulating weakly coupled DA provided enough informa-
tion for the 4D-Var to perform well in both the atmosphere
and ocean. Increasing the amount of localization (e.g., by
variable or by each single mode) had a negative effect when
observing all variables or observing only the atmosphere.
This suggests that cross-variable and cross-mode error covarian-
ces are important in this CDA application. When observing

FIG. 9. ETLM/LETLM estimate vs the analytical TLM in the variational setup when observing the atmosphere var-
iables only. In both the atmosphere and ocean, 3D-Var-B4D

h using weak coupling produces the lowest RMSE. The
4D-Var methods are given by circles, the 3D-Var methods are given by the diamonds, and the ETKFs are given by
the crosses. The ETLMs are giving by the triangle symbols, and the LETLMs are given by the square symbols. Since
B4D

f diverges in the atmosphere, results are not shown.
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only the ocean, the stricter localization approaches had the best
performance, suggesting that cross-mode covariances were less
useful to transfer information from the ocean to the atmo-
sphere, though this information became more useful as the
analysis update frequency was increased. In particular, results
suggested that a 4D-Var SCDA system may have advantages
over a WCDA system when the analysis update frequency is in-
creased. We noted differences in performance of the variational
methods that utilized flow-dependent error covariance informa-
tion. The rapid updating RU-ETKF as an ensemble generator
benefited from more cross-domain localization, while the

4D-ETKF benefited from less cross-domain localization.
When increasing the analysis update frequency, all SCDA
methods showed improvement in RMSE in the atmosphere,
with a slight decline in RMSE when using the rapid update
ensemble generator. In comparison, all WCDA methods de-
teriorated at the higher frequency. We emphasize that our
results indicate that the time scale of the analysis update fre-
quency needs greater consideration in SCDA applications rela-
tive to existing standard practice in NWP. For models without
an analytical TLM, it has been shown for an atmospheric case
(Allen et al. 2017) that using a localized ETLM (LETLM)

FIG. 10. RMSE when observing only ocean variables. The atmosphere has low accuracy for all methods, while the
ocean has the lowest RMSE with the BRU

f method for all localization strategies. The 4D-Var methods are given by
circles, the 3D-Var methods are given by the diamonds, and the ETKFs are given by the crosses. The ETLMs are
giving by the triangle symbols, and the LETLMs are given by the square symbols.

FIG. 11. Change in RMSE when shortening the analysis cycle update interval from 6 to 1.5 h. Negative values indicate improvement.
An overall reduction in RMSE is noted for the 4D-Var SCDAmethods that use the 4D-ETKF ensemble generator.
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could be a good substitute for the analytic or software-based
TLM and adjoint when used within 4D-Var. We found that
when used in the 4D-Var CDA, the ETLM/LETLM under cer-
tain regimes performed as accurately as the 4D-Var configura-
tions that used the analytical TLM. We note that while the
ETLM is not appropriate for larger systems due to scalability is-
sues, the LETLM provides a scalable alternative. We showed
that if an ensemble generator performs well enough to improve
the accuracy of 4D-Var via the introduction of its corresponding
flow-dependent Bf or hybrid Bh background error covariance
matrix, then the same ensemble generator produces reliable sta-
tistics for generating the ETLM.

When examining the performance of the ETLM, the flow
dependence of the rapid updating RU-ETKF provided more
accurate estimates of the atmosphere while the slower-
updating 4D-ETKF provided more an accurate estimates of
the ocean. Both ensemble generation methods were effective
for producing hybrid/flow-dependent background error covari-
ance matrices to further increase the accuracy of variational
methods compared to the use of a static climatological back-
ground error covariance. As most operational weather centers
have some form of ensemble-based forecasting capabilities, we
expect that a variant of the ETLM may be viable in more real-
istic applications. Particularly with the increasing adoption of
coupled forecast models, new operational models are becoming
more complex, which makes the implementation of an analyti-
cal TLM a greater challenge. The use of an ensemble-based
TLM and adjoint can provide an adaptive and feasible solu-
tion. As this requires some form of ensemble-generator, this
facilitates the use of flow-dependent and hybrid background
error covariances as well, which have been established to
have positive impacts on forecast skill.
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